[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Basic and Clinical Biochemistry and Nutrition
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 23, Issue 3 (Bimonthly 2019) ::
Feyz 2019, 23(3): 318-333 Back to browse issues page
Genetic etiology of Asthenozoospermia: A review
Arvand Akbari , Zahra Anvar , Mojtaba Jaafarinia , Mehdi Totonchi
Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, I. R. Iran. , m.totonchi@royaninstitute.org
Abstract:   (3980 Views)
Background: Asthenozoospermia, as the most prevalent cause of male infertility, is defined as low percentage of progressively motile spermatozoa per ejaculate. It occurs in both non-syndromic and syndromic forms and later it manifests as a part of primary ciliary dyskinesia. In the last decade, with the advent of Next-generation sequencing technologies numerous genes have been introduced in the pathogenesis of different diseases. Here, we review the genes implicated in asthenozoospermia by genetic studies.
Materials and Methods: Strategies employed by infertility genetics studies in original research articles extracted from PubMed database are critically reviewed. Afterwards, genes implicated in asthenozoospermia and primary ciliary dyskinesia are discussed.
Results: Until today, pathogenic variants in DNAH1, SEPT12, SLC26A8, CATSPER1, CATSPER2 and ADCY10 have been reported to cause non-syndromic asthenozoospermia. Moreover, DNAI1, DNAH5, DNAAF2, CCDC39, DYC1X1 and LRRC6 have been implicated in primary ciliary dyskinesia and syndromic asthenozoospermia.
Conclusion: Next-generation sequencing technologies and especially whole-exome sequencing in families with multiple asthenozoospermic patients showed considerable success in introduction of genes involved in asthenozoospermia leading to a more comprehensive knowledge on genetics of infertility.
Keywords: Asthenozoospermia, Primary ciliary dyskinesia, Next-generation sequencing, Whole-exome sequencing
Full-Text [PDF 527 kb]   (3102 Downloads)    
Type of Study: Review | Subject: General
Received: 2019/01/15 | Revised: 2019/08/18 | Accepted: 2019/04/15 | Published: 2019/07/31
References
1. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009*. Fertil Steril 2009; 92(5): 1520–4.
2. World Health Organization. Examination and processing of human semen. Geneva (Switzerland): WHO press; 2010
3. Nieschlag E, Behre H, Nieschlag S. Andrology: Male Reproductive Health and Dysfunction- Google Books. 3rd ed. New York City: Springer; 2010.
4. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol 2015; 13(1): 37.
5. Jung JH, Seo JT. Empirical medical therapy in idiopathic male infertility: Promise or panacea? Clin Exp Reprod Med 2014; 41(3): 108–14.
6. Curi SM1, Ariagno JI, Chenlo PH, Mendeluk GR, Pugliese MN, Sardi Segovia LM, et al. Asthenozoospermia: Analysis of a large population. Arch Androl 2003; 49(5): 343–9.
7. Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: Spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21 (4): 455–85.
8. Cao W, Gerton GL, Moss SB. Proteomic Profiling of Accessory Structures from the Mouse Sperm Flagellum. Mol Cell Proteomics 2006; 5(5): 801–10.
9. Burmester S, Hoyer-Fender S. Transcription and translation of the outer dense fiber gene (Odf1) during spermiogenesis in the rat. A study by in situ analyses and polysome fractionation. Mol Reprod Dev 1996; 45(1): 10–20.
10. Zarsky HA, Tarnasky HA, Cheng M, van der Hoorn FA. Novel RING finger protein OIP1 binds to conserved amino acid repeats in sperm tail protein ODF1. Biol Reprod 2003; 68 (2):543–52.
11. Fawcett DW. The anatomy of the spermatozoon after 300 years. Kaibogaku Zasshi 1975; 50(6): 326–7.
12. Baccetti B, Collodel G, Estenoz M, Manca D, Moretti E, Piomboni P. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Hum Reprod 2005; 20(10): 2790–4.
13. Eddy EM, Toshimori K, O’Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 2003; 61(1): 103–15.
14. Miki K1, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A 2004; 101(47): 16501–6.
15. Suárez SS, Osman RA. Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol Reprod 1987; 36(5): 1191–8.
16. GaddumRosse P. Some observations on sperm transport through the uterotubal junction of the rat. Am J Anat 1981; 160(3): 333–41.
17. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: Function and regulation. Reproduction 2001; 122(4): 519–26.
18. Okabe M. The cell biology of mammalian fertilization. Development 2013; 140(22): 4471 LP – 4479.
19. Milisav I. Dynein and dynein-related genes. Cell Motil Cytoskeleton 1998; 39(4): 261–72.
20. Wargo MJ, Smith EF. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci U S A 2003; 100 (1):137–42.
21. San Agustin JT, Witman GB. Role of cAMP in the reactivation of demembranated ram spermatozoa. Cell Motil Cytoskeleton 1994; 27(3): 206–18.
22. Skålhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS, Burton KA. Mutation of the Cα Subunit of PKA Leads to Growth Retardation and Sperm Dysfunction. Mol Endocrinol 2002; 16 (3): 630–9.
23. Tash JS, Bracho GE. Identification of phosphoproteins coupled to initiation of motility in live epididymal mouse sperm. Biochem Biophys Res Commun 1998; 251 (2):557–63.
24. Scott JD, DelľAcqua ML, Fraser IDC, Tavalin SJ, Lester LB. Coordination of cAMP Signaling Events through PKA Anchoring. Adv Pharmacol 1999; 47(C): 175–207.
25. Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+and not cAMP. Dev Biol 2002; 250 (1): 208–17.
26. Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 2005; 9(2): 249–59.
27. Ho HC, Suarez SS. Characterization of the Intracellular Calcium Store at the Base of the Sperm Flagellum That Regulates Hyperactivated Motility1. Biol Reprod 2003; 68(5): 1590–6.
28. Turner RM. Moving to the beat: A review of mammalian sperm motility regulation. Reprod Fertil Dev 2006; 18(1–2): 25–38.
29. Kuo YC, Shen YR, Chen HI, Lin YH, Wang YY, Chen YR, et al. SEPT12 orchestrates the formation of mammalian sperm annulus by organizing core octameric complexes with other SEPT proteins. J Cell Sci 2015; 128(5): 923–34.
30. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 2005; 8(3): 353–64.
31. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 2005; 8(3): 343–52.
32. Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH, et al. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat 2012; 33 (4): 710–9.
33. Hildebrand MS, Avenarius MR, Fellous M, Zhang Y, Meyer NC, Auer J, et al. Genetic male infertility and mutation of CATSPER ion channels. Eur J Hum Genet 2010; 18 (11): 1178–84.
34. [34] Singh AP, Rajender S. CatSper channel, sperm function and male fertility. Reprod Biomed Online 2015; 30(1): 28–38.
35. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, et al. A sperm ion channel required for sperm motility and male fertility. Nature 2001; 413 (6856): 603–9.
36. Chung JJ, Navarro B, Krapivinsky G, Krapivinsky L, Clapham DE. A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2011; 2(1): 153.
37. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 2007; 104 (4): 1219–23.
38. Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human Male Infertility Caused by Mutations in the CATSPER1 Channel Protein. Am J Hum Genet 2009; 84 (4): 505–10.
39. Yuzhou Zhang, Mahdi Malekpour, Navid Al‐Madani, Kimia Kahrizi, Marvam Zanganeh, Marzieh Mohseni, et al. Sensorineural deafness and male infertility: A contiguous gene deletion syndrome. J Med Genet 2007; 44 (4): 233–40.
40. Avidan N, Tamary H, Dgany O, Cattan D, Pariente A, Thulliez M, et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet 2003; 11(7): 497–502.
41. Schultz R, Tyllis N. Prioritizing health-care delivery in the Solomon Islands: First things first. Emerg Med Australas 2005; 17(5–6): 526.
42. Amiri-Yekta A, Coutton C, Kherraf ZE, Karaouzène T, Le Tanno P, Sanati MH, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod 2016; 31(12): 2872–80.
43. Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 2014; 94 (1): 95–104.
44. Neesen J, Kirschner R, Ochs M, Schmiedl A, Habermann B, Mueller C, et al. Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 2001; 10(11): 1117–28.
45. Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch Eur J Physiol 2004; 447 (5):710–21.
46. Escoffier J, Krapf D, Navarrete F, Darszon A, Visconti PE. Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. J Cell Sci 2012; 125(2): 473–85.
47. Rode B, Dirami T, Bakouh N, Rizk-Rabin M, Norez C, Lhuillier P, et al. The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: A potential role during sperm capacitation. Hum Mol Genet 2012; 21 (6): 1287–98.
48. Touré A, Lhuillier P, Gossen JA, Kuil CW, Lhôte D, Jégou B, et al. The Testis Anion Transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Hum Mol Genet 2007; 16 (15): 1783–93.
49. Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G. Septins at the annulus of mammalian sperm. Biol Chem 2011; 392 (8-9): 799–803.
50. Barker GA, Smith SN, Bromage NR. The bacterial flora of rainbow trout, Salmo gairdneri Richardson, and brown trout, Salmo trutta L., eggs and its relationship to developmental success. J Fish Dis 1989; 12(4): 281–93.
51. Munro NC, Currie DC, Lindsay KS, Ryder TA, Rutman A, Dewar A, et al. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax 1994; 49 (7):684–7.
52. Ibanez-Tallon I. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 2003; 12(90001): 27R–35.
53. Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 2006; 12(4): 363–72.
54. Boon M, Jorissen M, Proesmans M, De Boeck K. Primary ciliary dyskinesia, an orphan disease. Eur J Pediatr 2013; 172(2): 151–62.
55. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. Loss-of-Function Mutations in a Human Gene Related to Chlamydomonas reinhardtii Dynein IC78 Result in Primary Ciliary Dyskinesia. Am J Hum Genet 1999; 65(6): 1508–19.
56. Akbari A, Pipitone GB, Anvar Z, Jaafarinia M, Ferrari M, Carrera P. ADCY10 frameshift fariant leading to severe recessive asthenozoospermia and segregating with absorptive hypercalciuria. Hum Reprod 2019; 34 (6).
57. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 2014; 189(6): 707–17.
58. Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, et al. Axonemal Dynein Intermediate-Chain Gene (DNAI1) Mutations Result in Situs Inversus and Primary Ciliary Dyskinesia (Kartagener Syndrome). Am J Hum Genet 2001; 68(4): 1030–5.
59. Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171 (12): 1343–9.
60. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008; 456(7222): 611–6.
61. Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 2011; 43 (1): 72–8.
62. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 2013; 45 (9): 995–1003.
63. Horani A, Ferkol TW, Shoseyov D, Wasserman MG, Oren YS, Kerem B, et al. LRRC6 Mutation Causes Primary Ciliary Dyskinesia with Dynein Arm Defects. PLoS One 2013; 8(3).
64. Aston KI. Genetic susceptibility to male infertility: News from genome-wide association studies. Andrology 2014; 2(3): 315–21.
65. Pandis N. Case-control studies: Part 2. Am J Orthod Dentofacial Orthop, 2014; 146(3):402-3.
66. Levin KA. Study design V. Case–control studies. Evid Based Dent 2006; 7 (3): 83–4.
67. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the human genome. Science 1998; 280(5366): 1077–82.
68. LaFramboise T. Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Res 2009.
69. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature 2015; 526 (7571): 68–74.
70. Aston KI. Genetic susceptibility to male infertility: News from genome-wide association studies. Andrology 2014; 2 (3): 315–21.
71. Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, et al. Homozygous Mutation in SPATA16 Is Associated with Male Infertility in Human Globozoospermia. Am J Hum Genet 2007; 81 (4): 813–20.
72. Koscinski I, Elinati E, Fossard C, Redin C, Muller J, Velez de la Calle J, et al. DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet 2011; 88 (3): 344–50.
73. Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet 2011; 88(3): 351–61.
74. Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 2007; 39(5): 661–5.
75. Blouin JL, Meeks M, Radhakrishna U, Sainsbury A, Gehring C, Saïl GD et al. Primary ciliary dyskinesia: A genome-wide linkage analysis reveals extensive locus heterogeneity. Eur J Hum Genet 2000; 8(2): 109–18.
76. Geremek M, Zietkiewicz E, Diehl SR, Alizadeh BZ, Wijmenga C, Witt M. Linkage analysis localises a Kartagener syndrome gene to a 3.5 cM region on chromosome 15q24-25. J med genet, 2006; 43(1).
77. Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, et al. Homozygous Mutation in SPATA16 Is Associated with Male Infertility in Human Globozoospermia. Am J Hum Genet 2007; 81 (4): 813–20.
78. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 2009; 106 (45):19096–101.
79. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet 2014; 59 (1): 5–15.
80. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 2010; 42 (1):30–5.
81. Caburet S, Zavadakova P, Ben-Neriah Z, Bouhali K, Dipietromaria A, Charon C, et al. Genome-wide linkage in a highly consanguineous pedigree reveals two novel loci on chromosome 7 for non-syndromic familial premature ovarian failure. PLoS one 2012; 7 (3).
82. Caburet S, Arboleda VA, Llano E, Overbeek PA, Barbero JL, Oka K, et al. Mutant Cohesin in Premature Ovarian Failure. N Eng J Med 2014; 370 (10): 943–9.
83. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Eng J Med 2013; 369(16): 1502–11.
84. Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet 2012; 20
85. Rehman AU, Santos-Cortez RL, Drummond MC, Shahzad M, Lee K, Morell RJ, et al. Challenges and solutions for gene identification in the presence of familial locus heterogeneity. Eur J Hum Genet 2015; 23: 1207–15.
86. Clavijo RI, Arora H, Gibbs E, Cohen S, Griswold A, Bakircioglu E, et al. Whole Exome Sequencing of a Consanguineous Turkish Family Identifies a Mutation in GTF2H3 in Brothers With Spermatogenic Failure. Urology 2018; 120: 86–9.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbari A, Anvar Z, Jaafarinia M, Totonchi M. Genetic etiology of Asthenozoospermia: A review. Feyz 2019; 23 (3) :318-333
URL: http://feyz.kaums.ac.ir/article-1-3790-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 23, Issue 3 (Bimonthly 2019) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4645