[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Guide for Authors::
Online Submission::
Ethics::
Articles archive::
For Reviewers::
Contact us::
::
Biochemistry and Nutrition in Metabolic Diseases
..
DOAJ
..
CINAHL
..
EBSCO
..
IMEMR
..
ISC
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
enamad
..
:: Volume 27, Issue 4 (Bimonthly 2023) ::
Feyz 2023, 27(4): 461-472 Back to browse issues page
The effect of acute and chronic exercise on circulating GDF-15: a systematic review and meta-analysis
Mousa Khalafi , Amir Ghanbarpour Nosrati , Razieh sadat Mostafavi , Fatemeh Hosseini Jebeli
Department of Physical Education and Sports Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran , mousa.khalafi@kashanu.ac.ir
Abstract:   (787 Views)
Background and Aim: Growth differentiation factor 15 (GDF15) is a cytokine with anti-inflammatory effects, which the influences of acute and chronic exercise on it are not clearly known. Therefore, the aim of the present meta-analysis was to determine the effect of the acute and chronic exercise on circulating GDF15.
Methods: To extract original articles published in Farsi and English language journals, a comprehensive search was conducted in PubMed, Web of Science, Scopus, Magiran, Noormags and SID databases until December 22, 2022. Two separate meta-analyses were performed to calculate the effect size of standardized mean difference (SMD) and 95% confidence interval for the acute and chronic effects of exercise on GDF15.
Results: A total of 18 studies including 551 subjects were included in the meta-analysis. The results showed that acute exercise activity leads to a significant increase in GDF15 [P=0.001, (1.65 to 0.80 CI: 1.23)], while chronic exercise activity had no significant effect on GDF15 [P=0.24, (0.96 to 0.24-CI: 0.35)].
Conclusion: Exercise leads to a transient and short-term increase in GDF15, which may contribute to the beneficial metabolic effects of exercise.

 
Keywords: Exercise, GDF15, Cytokine
Full-Text [PDF 608 kb]   (390 Downloads)    
Type of Study: Review | Subject: General
Received: 2023/08/2 | Revised: 2023/10/30 | Accepted: 2023/09/17 | Published: 2023/10/23
References
1. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nature medicine. 2017;23(10):1215-9.doi:10.1038/nm.4393 PMid:28846098
2. Yang L, Chang C-C, Sun Z, Madsen D, Zhu H, Padkjær SB, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nature medicine. 2017;23(10):1158-66.doi:10.1038/nm.4394 PMid:28846099
3. Rochette L, Zeller M, Cottin Y, Vergely C. Insights into mechanisms of GDF15 and receptor GFRAL: therapeutic targets. Trends in Endocrinology & Metabolism. 2020;31(12):939-51.doi:10.1016/j.tem.2020.10.004 PMid:33172749
4. Campderrós L, Sánchez-Infantes D, Villarroya J, Nescolarde L, Bayès-Genis A, Cereijo R, et al. Altered GDF15 and FGF21 levels in response to strenuous exercise: a study in marathon runners. Frontiers in physiology. 2020;11:550102.doi:10.3389/fphys.2020.550102 PMid:33329017 PMCid:PMC7711067
5. Tian D, Meng J. Exercise for prevention and relief of cardiovascular disease: prognoses, mechanisms, and approaches. Oxidative Medicine and Cellular Longevity. 2019;2019. doi:10.1155/2019/3756750,PMid:31093312 PMCid:PMC6481017
6. Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocrine reviews. 2020;41(4):594-609. doi:10.1210/endrev/bnaa016 PMid:32393961 PMCid:PMC7288608
7. Leal LG, Lopes MA, Batista Jr ML. Physical exercise-induced myokines and muscle-adipose tissue crosstalk: a review of current knowledge and the implications for health and metabolic diseases. Frontiers in physiology. 2018;9:1307. doi:10.3389/fphys.2018.01307 PMid:30319436 PMCid:PMC6166321
8. Johann K, Kleinert M, Klaus S. The role of GDF15 as a myomitokine. Cells. 2021;10(11):2990.doi:10.3390/cells10112990 PMid:34831213 PMCid:PMC8616340
9. Plomgaard P, Hansen JS, Townsend LK, Gudiksen A, Secher NH, Clemmesen JO, et al. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans. Frontiers in Endocrinology. 2022;13:1037948. doi:10.3389/fendo.2022.1037948,PMid:36545337 PMCid:PMC9760804
10. Xu X, Li Z, Gao W. Growth differentiation factor 15 in cardiovascular diseases: from bench to bedside. Biomarkers. 2011;16(6):466-75. doi:10.3109/1354750X.2011.580006 PMid:21718220
11. Chang JS, Namkung J. Effects of Exercise Intervention on Mitochondrial Stress Biomarkers in Metabolic Syndrome Patients: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2021;18(5). doi:10.3390/ijerph18052242 PMid:33668309 PMCid:PMC7956208
12. Conte M, Martucci M, Mosconi G, Chiariello A, Cappuccilli M, Totti V, et al. GDF15 Plasma Level Is Inversely Associated With Level of Physical Activity and Correlates With Markers of Inflammation and Muscle Weakness. Frontiers in Immunology. 2020;11. doi:10.3389/fimmu.2020.00915 PMid:32477368 PMCid:PMC7235447
13. Plomgaard P, Hansen JS, Townsend LK, Gudiksen A, Secher NH, Clemmesen JO, et al. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans. Front Endocrinol (Lausanne). 2022;13:1037948. doi:10.3389/fendo.2022.1037948, PMid:36545337 PMCid:PMC9760804
14. Poulsen NS, Madsen KL, Hornsyld TM, Eisum ASV, Fornander F, Buch AE, et al. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion. 2020; 50: 35-41. doi:10.1016/j.mito.2019.10.005 PMid:31669236
15. Quist JS, Klein AB, Færch K, Beaulieu K, Rosenkilde M, Gram AS, et al. Effects of acute exercise and exercise training on plasma GDF15 concentrations and associations with appetite and cardiometabolic health in individuals with overweight or obesity - A secondary analysis of a randomized controlled trial. Appetite. 2022;182: 106423. doi:10.1016/j.appet.2022.106423 PMid:36563967
16. Rangraz E, Mirzaei B, Hatami H, Miri H. The Effect of resistance training on serum levels of selected cardiac biomarkers of diabetic elderly men. Journal of Applied Health Studies in Sport Physiology. 2023;10(1):27-38.
17. Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JFP, et al. Exercise increases circulating GDF15 in humans. Mol Metab. 2018;9:187-91. doi:10.1016/j.molmet.2017.12.016, PMid:29398617 PMCid:PMC5870087
18. Seo MW, Jung SW, Kim SW, Lee JM, Jung HC, Song JK. Effects of 16 Weeks of Resistance Training on Muscle Quality and Muscle Growth Factors in Older Adult Women with Sarcopenia: A Randomized Controlled Trial. Int J Environ Res Public Health. 2021;18(13). doi:10.3390/ijerph18136762,PMid:34201810 PMCid:PMC8267934
19. Kaleta-Duss AM, Lewicka-Potocka Z, Dąbrowska-Kugacka A, Raczak G, Lewicka E. Myocardial Injury and Overload among Amateur Marathoners as Indicated by Changes in Concentrations of Cardiovascular Biomarkers. Int J Environ Res Public Health. 2020;17(17). doi:10.3390/ijerph17176191 PMid:32859020 PMCid:PMC7503477
20. Perrone MA, Pomiato E, Palmieri R, Di Già G, Piemonte F, Porzio O, et al. The Effects of Exercise Training on Cardiopulmonary Exercise Testing and Cardiac Biomarkers in Adult Patients with Hypoplastic Left Heart Syndrome and Fontan Circulation. J Cardiovasc Dev Dis. 2022;9(6).doi:10.3390/jcdd9060171 PMid:35735800 PMCid:PMC9225068
21. Tchou I, Margeli A, Tsironi M, Skenderi K, Barnet M, Kanaka-Gantenbein C, et al. Growth-differentiation factor-15, endoglin and N-terminal pro-brain natriuretic peptide induction in athletes participating in an ultramarathon foot race. Biomarkers. 2009;14(6):418-22. doi:10.1080/13547500903062976 PMid:19563304
22. Moradi M, Akbarnejhad A, Choobineh S, SHABKHIZ F. The effect of eight weeks of intense and continuous intermittent training on GDF15 and IL6 factor levels in overweight men. 2021.
23. Moghadami K, Shabani M, Khalafi M. The effect of aerobic training on serum levels of Growth differentiation factor-15 and insulin resistance in elderly women with metabolic syndrome. Daneshvar Medicine. 2020;27(6):57-66.
24. Moghaddasi Y, Ghazalian F, Abediankenari S, Ebrahim K, Abednatanzi H. Effect of Aerobic and Resistance Training on GDF-15 Levels in Patients with Type 1 Diabetes. Journal of Mazandaran University of Medical Sciences. 2020;30(186):123-32.
25. Naderi L, Banaei Borojeni J, Kargarfard M, Keshavarz S. Comparison of Interval and Continuous Training on Growth Differentiation Factor 15, Pancreatic beta cell function and insulin resistance in Women with Type 2 Diabetes. medical journal of mashhad university of medical sciences. 2021;64(2).
26. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Australian Journal of Physiotherapy. 2009;55(2):129-33.doi:10.1016/S0004-9514(09)70043-1 PMid:19463084
27. Khalafi M, Sakhaei MH, Kheradmand S, Symonds ME, Rosenkranz SK. The impact of exercise and dietary interventions on circulating leptin and adiponectin in individuals who are overweight and those with obesity: A systematic review and meta-analysis. Advances in Nutrition. 2023;14(1):128. doi:10.1016/j.advnut.2022.10.001,PMid:36811585 PMCid:PMC10103003
28. Maillard F, Pereira B, Boisseau N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018;48(2):269-88. doi:10.1007/s40279-017-0807-y,PMid:29127602
29. Zhang H, Fealy CE, Kirwan JP. Exercise training promotes a GDF15-associated reduction in fat mass in older adults with obesity. American Journal of Physiology-Endocrinology and Metabolism. 2019; 316(5):E829-E36. doi:10.1152/ajpendo.00439.2018, PMid:30860878 PMCid:PMC6580172
30. Klein AB, Kleinert M, Richter EA, Clemmensen C. GDF15 in appetite and exercise: essential player or coincidental bystander? Endocrinology. 2022;163(1):bqab242. doi:10.1210/endocr/bqab242, PMid:34849709
31. Hofmann M, Schober-Halper B, Oesen S, Franzke B, Tschan H, Bachl N, et al. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). European journal of applied physiology. 2016;116:885-97. doi:10.1007/s00421-016-3344-8 PMid:26931422 PMCid:PMC4834098
32. Conte M, Martucci M, Mosconi G, Chiariello A, Cappuccilli M, Totti V, et al. GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness. Frontiers in immunology. 2020; 11:915. doi:10.3389/fimmu.2020.00915, PMid:32477368 PMCid:PMC7235447
33. Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing research reviews. 2022;75:101569. doi:10.1016/j.arr.2022.101569 PMid:35051643
34. Laurens C, Parmar A, Murphy E, Carper D, Lair B, Maes P, et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI insight. 2020;5(6). doi:10.1172/jci.insight.131870 PMid:32106110, PMCid:PMC7213799
35. Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JF, et al. Exercise increases circulating GDF15 in humans. Molecular metabolism. 2018;9:187-91. doi:10.1016/j.molmet.2017.12.016 PMid:29398617 PMCid:PMC5870087
36. Eddy AC, Trask AJ. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev. 2021;57:11-8.doi:10.1016/j.cytogfr.2020.11.002, PMid:33317942 PMCid:PMC7897243
37. 37. Xie S, Li Q, Luk AO, Lan H-Y, Chan PK, Bayés-Genís A, et al. Major adverse cardiovascular events and mortality prediction by circulating GDF-15 in patients with type 2 diabetes: a systematic review and meta-analysis. Biomolecules. 2022;12(7):934. doi:10.3390/biom12070934 PMid:35883490 PMCid:PMC9312922
38. 38. Xue XH, Tao LL, Su DQ, Guo CJ, Liu H. Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta‐analysis. Brain and Behavior. 2022;12(2):e2502. doi:10.1002/brb3.2502 PMid:35068064 PMCid:PMC8865151
39. Luo J-W, Duan W-H, Song L, Yu Y-Q, Shi D-Z. A meta-analysis of growth differentiation factor-15 and prognosis in chronic heart failure. Frontiers in cardiovascular medicine. 2021;8:630818.doi:10.3389/fcvm.2021.630818,PMid:34805295 PMCid:PMC8602355
40. Mullican SE, Lin-Schmidt X, Chin C-N, Chavez JA, Furman JL, Armstrong AA, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nature medicine. 2017;23(10):1150-7.doi:10.1038/nm.4392 PMid:28846097
41. Johnen H, Kuffner T, Brown DA, Wu BJ, Stocker R, Breit SN. Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE−/− mice from the development of atherosclerosis. Cardiovascular Pathology. 2012; 21 (6):499-505. doi:10.1016/j.carpath.2012.02.003, PMid:22386250
42. Yalcin MM, Altinova AE, Akturk M, Gulbahar O, Arslan E, Ors Sendogan D, et al. GDF-15 and hepcidin levels in nonanemic patients with impaired glucose tolerance. Journal of Diabetes Research. 2016;2016. doi:10.1155/2016/1240843 PMid:27642607 PMCid:PMC5014962
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalafi M, Ghanbarpour Nosrati A, Mostafavi R S, Hosseini Jebeli F. The effect of acute and chronic exercise on circulating GDF-15: a systematic review and meta-analysis. Feyz 2023; 27 (4) :461-472
URL: http://feyz.kaums.ac.ir/article-1-4934-en.html


Creative Commons License
This open access journal is licensed under a Creative Commons Attribution-NonCommercial ۴.۰ International License. CC BY-NC ۴. Design and publishing by Kashan University of Medical Sciences.
Copyright ۲۰۲۳© Feyz Medical Sciences Journal. All rights reserved.
Volume 27, Issue 4 (Bimonthly 2023) Back to browse issues page
مجله علوم پزشکی فیض Feyz Medical Sciences Journal
Persian site map - English site map - Created in 0.06 seconds with 46 queries by YEKTAWEB 4645