حذف بیولوژیکی فلز سرب از محیط‌های آبی با استفاده از جاذبه‌های زیستی ارزان قیمت

مريم مظاهری تهرانی،* رضا داغی، علیرضا تذر

* کارشناس ارشد، پژوهشکده علوم هسته‌ای، پژوهشگاه علوم و فناوری هسته‌ای
1 استادیار، پژوهشکده علوم هسته‌ای، پژوهشگاه علوم و فناوری هسته‌ای
کارشناس. پژوهشکده علوم هسته‌ای، پژوهشگاه علوم و فناوری هسته‌ای
m.mazaheri@aeoi.org.ir

خلاصه:
سابقه و هدف: سرب به‌عنوان یکی از فلزات سنگین خط‌برنگی با اثرات سیمی طولانی مدت بر سلامت انسان و همچنین محیط زیست شناخته شده است. در تحقیق حاضر، فرآیند جذب زیستی تابعه چای در محیط آبی حاوی پهلوهای سرب مورد بررسی قرار گرفت. همچنین، تأثیر فاکتورهای مهم در جذب زیستی تابعه pH، شدت اولیه پهلوهای سرب و زمان تماس آزمایش. شد. به‌منظور ارزیابی فرآیند جذب تابعه چای، تأثیر آزمایش‌گاهی جذب زیستی سرب BA استفاده از سرب در علاوه بر درمانی داخلی لک‌گیر و فردیت، مورد تجزیه و تحلیل قرار گرفت.

مواد و روش‌ها: تمام مواد شیمیایی مصرف شده با درجه خلوص بالای 95% بسته و روغن‌هایی با نسبت آن‌ها به روش استیل‌سیکوپی آنتی‌بیوت بسته شدند.

\[\text{\(^{25} \text{C} \)} \text{ انجام شد و تنهاها به روش استیت‌سکوپی آنتی‌بیوت بسته شدند.} \]

نتایج: نتایج نشان داد که pH بیشینه جذب 5/4 بوده و با کاهش و افزایش آن فرآیند جذب کاهش می‌یابد. فرآیند جذب سرب بوده و زمان رسیدن به تعادل در سیستم مغز ماشینی بهره‌مند و ممکن است در سیستمی سیمی طولانی مدت بر سلامت انسان و محیط زیست شناخته شود. در پژوهش‌های قبلی، تأثیر فاکتورهای مهم در جذب زیستی تابعه pH، شدت اولیه پهلوهای سرب و زمان تماس آزمایش. شد. به‌منظور ارزیابی فرآیند جذب تابعه چای، تأثیر آزمایش‌گاهی جذب زیستی سرب BA استفاده از سرب در علاوه بر درمانی داخلی لک‌گیر و فردیت، مورد تجزیه و تحلیل قرار گرفت.

نتیجه‌گیری: می‌توان از نتایج که بدین تیمار شیمیایی با فیزیکی به‌عنوان یک جاذب زیستی جدید ارزان قیمت برای حذف فلز سرب از محیط‌های آبی استفاده کرد. همچنین، به‌منظور ارزیابی فرآیند جذب رابطه با جاذب تابعه چای (حداکثر جذب 142 mg/g) و به‌دست‌آورده در ایران و کم کیفیت می‌توان از آن برای حذف فلز سرب از محیط‌های آبی با استفاده کرد.

واژگان کلیدی: فلزات سنگین، جاذب زیستی، جاذب‌های ارزان قیمت، مدل‌های آزمایشگاهی، فلز سرب.
Biological removal of Lead from aqueous solutions using low-cost biosorbents

Mazaheri-Tehrani M*, Dabbagh R, Nafar AR

Nuclear Science Research School, Nuclear Science and Technology Research Institute, Tehran, I. R. Iran.
Email: mmazaheri@aeoi.org.ir

Abstract:

Background: Lead is widely known as one of the most hazardous substances that causes adverse long-term effects on human health and environment. In this research, the biosorption capacity of tea waste in aqueous solution containing Lead ions was studied. Also important parameters (e.g. pH, initial concentration and contact time on the biosorption) were investigated. In order to evaluate the adsorption capacity of tea waste, the experimental data were fitted to the Langmuir and Freundlich isotherm models.

Materials and Methods: All the chemicals used were of analytical grade. Biosorption experiments were carried out in rotary shaker at 25 °C. The samples were analyzed by spectroscopy.

Results: The results showed that the optimal pH value for adsorption was 4.5 which was decreased with increasing and decreasing of pH. The biosorption was relatively quick and the equilibrium time 2 hours. The biosorption kinetics studies showed that more than 95% of biosorption was completed within 1 hour. The maximum removal efficiency (98%) obtained on using 4 g/l tea waste in aqueous solution containing Lead (100 ppm) ions at optimal pH. According to results, Freundlich model was the best isotherm model for biosorption. The best isotherm model was Freundlich model.

Conclusion: The results showed that tea waste is a good and new low-cost biosorbent for removing lead ions from aqueous solution with no chemical or physical pre-treatment. Considering the high adsorption value (the maximum biosorption 142 mg g⁻¹), tea waste could be considered as an effective biosorbent to remove lead ions from industrial wastewater due to inexpensive, abundance and readily availability in Iran.

Keywords: Heavy metals, Biosorption, Low-cost biosorbents, Isotherm models, Lead metal