تعیین اثر عناصر کمیاب سرب و روي بر آمیلین در آزمایشگاهی

سید مهدی میرهاشمی، فرشته بهمنی، فاطمه نجاتی، فهمه طالبی، فرزانه خلخالی، محسن مهدی‌زاده

استادیار، مرکز تحقیقاتی بیوشیمی و تغذیه در بیماری‌های منابع، دانشگاه علوم پزشکی کاشان

1 دانشجوی کارشناسی علوم آزمایشگاهی، کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی کاشان

2 کارشناس ارشد بیوشیمی، مرکز تحقیقاتی بیوشیمی و تغذیه در بیماری‌های منابع، دانشگاه علوم پزشکی کاشان

3 کارشناس، مرکز تحقیقاتی بیوشیمی و تغذیه در بیماری‌های منابع، دانشگاه علوم پزشکی کاشان

میرحسامی@kaums.ac.ir

خلاصه:

سابقه و هدف: دیابت شیرین نوع 2 را می‌توان به عنوان یک بیماری کنفوماسیونی تعیین کرد. زیرا در آن پروتئین تشکیل دهنده، سلول‌های پنجه آمیلین، دست خوش تغییر در سنگین و تعداد اندام‌های آمیلین تا شرایط آزمایشگاهی برسی شد.

مواد و روش‌ها: برای انتخاب سرب و رود آمیلین، محلول استوک با پرای کریه- هنلیت، pH: 4/12 اضافه شده تا غلظت نهایی 400 میکرومولار. pH: 37 درجه C، میلیمیتر مول. 50 از روش و میلیمیتر مول از سرب نیز جداگانه در محلول حاوی آمیلین و همچنین کاهش از روش و سرب و آمیلین با همین غلظت در شرایط کیفیت بیونکس آمیلین کنترل انتخاب شدند. تجمع پیا اندازه‌گیری فلوئوراسیون 555، 565 اندام‌گیری شد.

نتایج: یافته‌های داده که روی به میزان 32/131 درصد و سرب به میزان 32/17 درصد رسوب آمیلین را نسبت به گروه کنترل افزایش دادند. ترکیب سرب و روی نیز در مقایسه با گروه سرب 24/0 درصد رسوب آمیلین را آزاد دادند. این تحقیق نشان داد که تحت شرایط آزمایشگاهی سرب و روی به‌طور چندانی اثر نداشته‌اند و ترکیب آنها اثرات کاهشی در تشکیل صفحات آمیلین نداشتند. اما سرب به‌طور گسترده‌تری در رسوب آمیلین ایفا می‌نمایید.

واژگان کلیدی: دیابت شیرین، آمیلین، سرب، روی
Determining the effect of trace elements (Lead and Zinc) on amylin
Amyloidogenesis in vitro

Mirhashemi SM1*, Bahmani F1, Nejati F2, Talebi F2, Khalaji F1, Mahdizade M1

1- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan I. R. Iran.
2- Student Research Committee, Kashan University of Medical Sciences, Kashan, I. R. Iran.

* Corresponding Author: mirhashemi@kaums.ac.ir

Abstract:

Background: Type 2 diabetes mellitus can be defined as a conformational disease because in which a constituent beta cell protein, islet amyloid polypeptide (amylin), undergoes a change in tertiary structure followed by a self-association. In this research, Lead (Pb) and Zinc effects in the aggregation of the amylin was examined experimentally.

Materials and Methods: Human amylin peptide and other chemicals were purchased from Sigma-Aldrich Company. Aggregation was induced by adding stock solution to modified Krebs-Hensleit buffer (pH: 7.4) to a final concentration of 0.4 μM and incubated at 37°C for 144h. Zinc (50 μM) and Pb (10 μM) was prepared in the peptide containing solution, separately. Also a mixture of trace elements and amylin with the same concentration was prepared. The zinc and Pb free solution was selected as control. To monitor the peptide precipitation Thioflavin T fluorescence assay was performed.

Results: The results showed that zinc increased amylin aggregation by 12.31 % ($P<0.05$) and Pb enhanced aggregation potential by 23.17 % ($P<0.05$). A combination of Zn and Pb increased amylin aggregation by 0.24% compared to Pb group.

Conclusion: Under the experimental conditions, Pb and Zinc separately have permissive effects on formation of beta-amyloid sheet. However, Pb along with Zinc has no synergistic effect on aggregation of amylin.

Keywords: Diabetes Mellitus, Amylin, Lead, Zinc