بررسی به کارگیری ریزجلبک‌های اسپیرولینا پلنتسیس و کلروکارگیری با بایوفیلترها
به منظور حذف تركیبات فلزات سنگین از فاضلاب‌های صنعتی

*محمد عزیزخانی، جعفر‌محمد پرویزی، رضا رجبی‌پور و فریدون خانمی

دانشجوی کارشناسی، کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی شهید بهشتی
Azizkhani.mohamad@gmail.com

خلاصه:

ساخته و هدف: حذف فلزات سنگین در فاضلاب‌های صنعتی از موضوعات چالش بزرگی در سیاست‌های بهبود است. فلزات سنگین همچون چربی کادمیوم و نیکل در صورت ورود به محیط زیست بی‌پرور، خطر بی‌پایانی جیران تاپیک‌بری داشته باشند. هدف از این مقاله ارائه روشهای کارآمد است که با استفاده از دو روش جلبک اسپیرولینا و کلروکارگیری فلزات سنگین را رفع می‌کند و با آتبایی فلزات با این تركیبات مضار، نیز با استفاده از میکروگیاه‌های موجود در طبیعت، امکان استفاده مجدد از فلزات سنگین در صنایع مربوط را امکان‌پذیر می‌سازد.

مواد و روش‌ها: تاریخ‌های مورد بررسی قرار گرفته Elsevier Scopus مورد بررسی قرار گرفته. تاریخ: در روش‌های شدید، فلزات سنگین با ابعاد پیوندهای با دیواره‌ها و برخی اجزای سلولی در ریزجلبک اسپیرولینا و کلروکارگیری از فاضلاب حاوی این فلزات جدا می‌شوند. روشهای فلزات می‌تواند باعث عفونی و آفت‌های فلزات گردند. تولید این بسته‌ها در محوطه کارخانه‌ها نیز با ملاحظه برآورده‌ها می‌تواند توجه آبادی‌ها را به داشته باشد.

نتیجه‌گیری: با توجه به خطرات که انتشار فلزات سنگین باعث بی‌پروری برای بی‌پایان ایجاد می‌کند و ورود این آلیاف به محیط زیست، تصفیه و فیلتراسیون فلزات‌های صنعتی از این فلزات غیر قابل جرم پوشی است. در این راستا، استفاده از سیستم‌های ترکیبی به‌منظور حذف این فلزات از فاضلاب خروجی از کارخانه‌ها حائز اهمیت است. به کارگیری در ریزجلبک اسپیرولینا و کلروکارگیری جلبک سطحی و ایجاد پیوند با این فلزات، باعث بهبود فیلتراسیون سازمان‌های دانش می‌باشد و به کاهش فلزات سنگین ایجاد زنده می‌گردد.

واژگان کلیدی: اسپیرولینا، کلروکارگیری، فلزات سنگین، فاضلاب
A review on the application of two microalgae (Chlorella vulgaris, Spirulina platenesis) as biofilters to eliminate heavy metals from industrial waste water

Azizkhani M*, Baghestani M, Bagheri Z, Nikmanesh H

Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, I. R. Iran.

* Corresponding Author: Azizkhani.mohamad@gmail.com

Abstract:

Background: Eliminating heavy metal compounds from industrial waste water has been a critical matter through years. Although such metals (e.g. Mercury, Cadmium and Nickel) have specific functions in particular industries, they will be dangerous and will be considered pollutants if they enter the environment and affect the ambient ecosystem. Many researches were conducted to eliminate these compounds. The aim of this study was to present an efficient and cost-effective method to absorb heavy metal ions using two microalgae (Chlorella vulgaris, Spirulina platenesis). This method is much more economical compared to mesoporous materials and other nano-adsorbents.

Materials and Methods: The academic databases of Scopus and Elsevier were searched.

Results: In this method, heavy metal compounds and ions make some bonds and physical adsorption to the microalgae's cell walls and some other cell ingredients get eliminated from the whole waste water. While the biomass in this process is important, the viability is not. Moreover, diluting the waste water can increase the elimination process yield. The two blue-green algaes have many functions like food production, pharmaceuticals and medicine that must have been produced under sterile condition in closed bioreactors, but for this function we can produced the biomass in open pounds next to the factories.

Conclusion: Considering the dangers and serious pollutions that heavy metals can make for human beings potentially, and their entrance to the environment, filtration of industrial waste water that carry heavy metals are inevitable. Eliminating these metals from the waste water matrix is important. Using these two microalages can be effective for the purpose of physical adsorption and the formation of bonds with metal compounds which makes a cost-effective and efficient filtration.

Keywords: Spirulina, Chlorella, Biofilters, Heavy metals, Wastewater