تأثیر تغذیه مس بر رشد و مقدار اساتیس رزماری در شرایط تنش شوری

مهدی حجازی مهرزی، و حیدر رضا جلالی

گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان
mhejazi@uk.ac.ir

خلاصه:

هدف و ساقه: رزماری یکی از گیاهان دارویی است که پانزده زیادتر در لولید آنتی‌کسیدان‌های طبیعی از خود نشان داده است. ممواد و روش‌ها: در یک آزمایش گلخانه‌ای (کشت خاکی) تأثیر نش شوری و مس بر رشد و مقدار اساتیس رزماری مورد بررسی قرار گرفت. قلم‌های پژوهش از این نظر که تیمار شوری با سطح (صفر، 50 و 100 میلی‌مولار) کلرید سدیم و دو سطح خشکی از مس (صفر و 5 میلی‌گرم در هکتگرام خاک) قرار گرفتند.

نتایج: شوری و مس تأثیر معنی‌داری بر رشد رزماری داشتند. با افزایش شوری آب آپاری به 50 و 100 میلی‌مولار کلرید رشد رزماری به ترتیب 7 و 11 درصد کاهش یافت که نشان از تحمیل این گیاه به شرایط نش شوری دارد. تغذیه با مس به‌طور جزئی سبب کاهش اثرات مخرب تنش شوری در شرایط عدم شوری (صفر میلی‌مولار) و شوری ملام (50 میلی‌مولار) گردید. این نتایج نشان می‌دهد که مس از طریق اصلاح با افزایش سرعت متابولیت‌های ایجاد کننده مقدار تنش رزماری تأثیر داشت. افزایش شوری به 100 میلی‌مولار تغییر در مقدار اساتیس زمانی نکرد. کاربرد مس در شرایط صفر و 50 میلی‌مولار کلرید سبب افزایش مقدار اساتیس شد. اما در سطح 100 میلی‌مولار تغییر ایجاد نکرد.

نتیجه‌گیری: طبق نتایج این تحقیق مس زمانی افزایش تحمیل رزماری به شوری و تولید متابولیت‌های ثانویه در این گیاه در شرایط شوری گردید.

واژگان کلیدی: مس، رزماری، نش شوری، متابولیت‌های ثانویه

881
Effect of Cu nutrition on growth and essential oil content of salt-stressed rosemary plants

Hejazi Mehrizi M, Jalali VR

Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, I. R. Iran.

* Corresponding Author: mhejazi@uk.ac.ir

Abstract:

Background: Rosemary is a medicinal plant exhibiting potential for natural antioxidants. **Materials and Methods:** In a glasshouse (soil culture) experiment, the effect of salt stress and copper nutrition on growth and essential oil of rosemary was investigated. Uniform cuttings of rosemary were exposed to three salinity levels (0, 50 and 100 mM NaCl) and two copper concentrations (0, 5 mg Cu kg⁻¹ soil).

Results: Salinity and Cu nutrition had a significant effect on the growth of rosemary. By increasing salinity of irrigation water from 0 to 50 and 100 mM NaCl, the growth of rosemary was decreased by 7% and 11%, respectively. The slight reduction in the growth of rosemary even at the highest salinity level (100 mM NaCl) indicating that rosemary is a relative salt-tolerant plant (Threshold EC= 8.0 dS m⁻¹). Copper nutrition partly alleviated adverse effect of low and medium salinity levels (0 and 50 mM NaCl) on growth of rosemary. The results show that Cu nutrition improves or accelerates the adaptation of rosemary to salt stress. The interaction of salinity and Cu resulted in a significant increase in essential oil content of rosemary. Moderate salinity level (50 mM NaCl) induced a significant increase in essential oil content of rosemary. However, exposure of rosemary plants to 100 mM NaCl did not change essential oil content. At 0 and 50 mM NaCl treatment, oil content of rosemary was influenced by Cu while it remained unchanged at 100 mM NaCl.

Conclusion: According to the results of the study, Cu had a positive impact on rosemary salt tolerance and its secondary metabolites production.

Keywords: Copper, Rosemary, Salt stress, Secondary metabolites